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Locally weighted support vector regression for spatial predictions 
 

Camilla Z. da Silva and Jeff Boisvert 
 
Machine learning algorithms have been increasingly applied to geostatistical framework, benefitting from 
the fact that these techniques are capable of capturing complex features directly from the data without 
being explicitly programed to so. Machine learning often achieves this goal by minimizing a global risk 
function. However, when the input data is unevenly distributed over the input space, a global criterion may 
not be adequate to sub regions of the input space, compromising the generalization capability of the 
algorithm. A different paradigm lies in locally weighted learning, that aims to fit models on patches of the 
input space based on the premise that nearby information is a better indicator of the system than the 
training set as whole. This paper aims at evaluating the applicability of a locally weighted learning to 
environmental data 
 
Introduction 

Evaluation of mineral resources is linked to geostatistical methods which describe spatially continuous 
phenomena using samples collected over an area of interest. The goal is to obtain the best estimate possible 
at an unsampled location. This is done by quantifying and modeling the spatial patterns observed on the 
data that arise from the numerous geological process during the deposition process (Rossi and Deutsch, 
2014). Geostatistics provides the tools to model and describe these patterns, nonetheless, a common 
assumption is that the variables under analysis are within a stationary domain. That is, that the locations 
inside the domain and the variables belong to the same statistical population (Rossi and Deutsch, 2014). 
Stationarity is critical for the appropriateness of geostatistical methods, pooling different domains together 
can mask important features of the variable of interest. However, defining stationary domains is not 
straightforward due to the complexity of the geological process. 
 
On the other hand, machine learning (ML) is a vast set of techniques based on the premise that if the data 
set is representative of the targeting problem, it can be used to exploit meaningful relationships directly 
from the data without being explicitly programmed to so, and without the assumption of stationarity. The 
use of ML has been increasingly applied on the geostatistical framework (Dowd and Saraç, 1994; Kapagerdis, 
1999; Tahmasebi and Herzakahni, 2012; Dai et al., 2014; Gangappa et al., 2017, Maniar et al., 2018, Tomislav 
et al., 2018, Samson and Deutsch, 2018; Samson and Deutsch, 2019 Walch et al., 2019), however it does 
not guarantee data reproduction as does ordinary kriging and does not explicitly account for spatial 
correlations, an important feature observed on geological data sets. Samson (2019) has shown the ML 
models can be incorporated into a hybrid geostatistical framework, where the relationships captured 
through ML are implemented as an auxiliary information on the estimation process. 
 
Most of ML models are built on the whole training set available and then, the fit model is used to predict 
new instances. But, when data is not evenly distributed in the input space, the function fit globally, with the 
entire training set, could have the generalization capability compromised. That is because, in the machine 
learning context, models are built to extract general properties of the data and not specificities of individual 
training points. This characteristic arises from the fact ML models are built to minimize the global error, 
which may not be appropriate for certain regions of the data set. Hence, global fitting sometimes affects 
negatively the generalization capability of the model (Galvan et.al, 2011).  An alternative lies in local learning 
(Atkeson et al.,1997) or lazy learning as it is also referred in the literature. 
 
Local learning defers the process of training until an instance needs to be predicted, and it is done by 
considering solely relevant data to that particular instance. Relevance usually is defined by a specific metric. 
In geological data the spatial patterns are important features that demonstrate that samples close in space 
are more similar than samples further away. Moreover, rarely geological data is evenly distributed in the 
input space. Due to these common features of environmental attributes, global ML models may end up to 
be suboptimal to the problem at hand. Thus, the approach of local learning will be explored.  
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Background theory 
 
Local learning 
 
Local learning algorithms attempt to adjust the training system to the specific properties of a region of the 
input space (Bottou and Vapnik, 1992). The procedure mounts to breaking the global complex problem into 
several smaller simpler problems throughout the space. Yet, it is counter intuitive. Instead of finding a sole 
fit, the process is performed several times. Instead of using the maximum data available, it only considers 
the training data in the specific subregion. This may seem slow and inefficient. Be that as it may, Bottou and 
Vapnik, (1922) have shown that often global models can benefit from the locality component.   
 
Locally weighted learning 
  
A locally weighted algorithm not only considers a sub region of the input space and the sub set of training 
points inside the vicinity of the region, but it also treats the data samples differently, according to a metric 
of relevance. A common way to measure similarity is through the Euclidean distance. One can emphasize 
relevance either by assigning different weights to the sample or by weighting the training criteria (Atkenson, 
1997).  For example, a nonlinear global model generally aims at minimizing the following cost function: 
 

∑𝐿(𝑓(𝐱𝑖 , 𝜃), 𝑦𝑖)
𝑖

 

Where 𝑦𝑖 is the target value, 𝐱𝑖 is the features input vector, 𝜃 is the model parameter vector and 𝐿 is a 
general loss function. Weighting the cost function leads to forcing the model to fit well nearby data while 
being less concerned about the fit of distant points. The above cost function becomes: 

∑𝐿(𝑓(𝐱𝑖 , 𝜃), 𝑦𝑖)𝑊(𝑑)
𝑖

 

Where 𝑊(𝑑) is a weight function dependent on the distance of the training data to the unsampled location. 
This approach mounts to a local model that is adjusted to each subregion. 
 
Weighting functions 
 
According to Atkenson et al. (1997) and Ellatar et al., (2010), the weighting function should be one that has 
its maximum value when the distance between the unsampled location and the data point is zero and decay 
as distance increases. One common weight function is the inverse distance function. 
 

𝑊(𝑑) =
1

𝑑𝑝
 

Where 𝑝 the power that defines how rapidly the weight function decays. Another weight function is the 
gaussian given by 

𝑊(𝑑) = 𝑒−
𝑑2

2𝜎  
 
Where 𝜎 is a smoothing parameter which controls the range of the generalization. It can be set globally 
through an optimization process or based on the local information (Ellatar et al.,2010).  Also, there is the 
tricube weighting function, that has a finite extent of 1.  
 
 

𝑊(𝑑) =  {
(1 − |𝑑3|)3 𝑖𝑓 |𝑑| < 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
Other weighting functions can be tailored specifically to the problem.  
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Support vector regression 
 
Support vector machines (Vapnik, 1995;1998) is a ML algorithm based on statistical learning theory, in 
which the goal is to minimize the structural risk function, in contrast to neural networks that aim in 
minimizing the empirical risk function (Ellatar et al., 2010). This particular concept mounts to minimizing 
the upper bound of the generalization error other than minimizing the training error. Generally, support 
vector machines are applied to classification problems, nonetheless, the formalism can be extended to 
regression problems through the introduction of Vapnik’s 𝜀-intensive region around the fitted function 
(Awad and Khanna, 2015).  
The goal is to obtain 𝑓(𝑥) that has a maximum of 𝜀 deviation from the actual observed target values while 
retaining the regression coefficients, 𝑤, as small as possible. Considering a training dataset 𝑥𝑛 with 𝑁 
observations and response values 𝑦𝑛, the aim is to find the linear function: 
 

𝑓(𝑥) = 〈𝑤, 𝑥〉 + 𝑏  
 

In this context, small 𝑤 values are obtained by means of minimizing the Euclidean norm 
1

2
‖𝑤‖2. Formally, 

it can be stated as a convex optimization problem: 
 

min
1

2
‖𝑤‖2  

Subject to the constraints:  

{
𝑦𝑖 − 〈𝑤, 𝑥〉 − 𝑏 ≤ 𝜀
〈𝑤, 𝑥〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀

   

 
The optimization presented is feasible when exists a function 𝑓 that approximated the pair (𝑥, 𝑦) with 𝜀 
precision. However, there is not always such function. When the solution is not feasible some errors are 
allowed by means of slack variables, 𝜉𝑛 and 𝜉𝑛

∗ , while ensuring that it is as flat as possible. For that, the 
following expression must be minimized: 
 

1

2
‖𝑤‖2 + 𝐶 ∑ (𝜉𝑛 + 𝜉𝑛

∗)𝑁
𝑛=1   

Subject to the constraints:   

{

∀𝑛: 𝑦𝑛 − 〈𝑤, 𝑥〉 ≤ 𝜀 + 𝜉𝑛
∀𝑛: 〈𝑤, 𝑥〉 − 𝑦𝑛 ≤ 𝜀 + 𝜉𝑛

∗

∀𝑛: 𝜉𝑛
∗ ≥ 0

∀𝑛: 𝜉𝑛 ≥ 0

 

 
The constant 𝐶 is a positive constant that controls the penalty imposed on values that lie outside the 𝜀- 
intensive region, that is, a regularization factor. 𝜉𝑛 and 𝜉𝑛

∗  allow error to exist, analogue to the soft margin 
concept on the support vector machine formulation. To obtain the solution for nonlinear problems 
Lagrange multipliers are introduced, which leads to the following optimization problem:  
 

𝐿(𝛼) =
1

2
∑ ∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑁
𝑗=1 〈𝑥𝑖,𝑥𝑗〉 + 𝜀 ∑ (𝛼𝑖 + 𝛼𝑖

∗) + ∑ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1   

 
Subject to the constraints: 

{
 
 

 
 
∑(𝛼𝑛 − 𝛼𝑛

∗ ) = 0

𝑁

𝑛=1

∀𝑛: 0 ≤ 𝛼𝑛 ≤ 𝐶
0 ≥ 𝛼𝑛

∗ ≥ 𝐶

 

 
The function to predict new values is described as: 
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𝑓(𝑥) = ∑ (𝛼𝑛 − 𝛼𝑛

∗ )〈𝑥𝑛, 𝑥〉 + 𝑏
𝑁
𝑛=1   

 
And the conditions Karush-Khun-Tucker are necessary to obtain optimal solutions.  
 

{
 

 
∀ 𝑛: 𝛼𝑛(𝜀 + 𝜉𝑛

∗ + 𝑦𝑛 − 〈𝑤, 𝑥𝑛〉 − 𝑏) = 0

∀ 𝑛: 𝛼𝑛(𝜀 + 𝜉𝑛 − 𝑦𝑛 + 〈𝑤, 𝑥𝑛〉 + 𝑏) = 0

∀ 𝑛: 𝜉𝑛(𝐶 − 𝛼𝑛) = 0

∀ 𝑛: 𝜉𝑛
∗(𝐶 − 𝛼𝑛

∗ ) = 0

 

 
However, some solutions are not obtained with a linear function. This is overcome by replacing the dot 

product 〈𝑥𝑖,𝑥𝑗〉 with a non-linear kernel function 𝐺(𝑥𝑖 , 𝑥𝑗) = ⟨𝜑(𝑥𝑖)|𝜑(𝑥𝑗)⟩ which maps the data into a high 

dimensional space. Hence: 
 

𝐿(𝛼) =
1

2
∑∑(𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝐺(𝑥𝑖 , 𝑥𝑗) + 𝜀∑(𝛼𝑖 − 𝛼𝑖

∗)

𝑁

𝑖=1

𝑁

𝑗=1

𝑁

𝑖=1

−∑𝑦𝑖(𝛼𝑖 + 𝛼𝑖
∗)

𝑁

𝑖=1

    

 
And the function to predict new values is: 
 

𝑓(𝑥) = ∑ (𝛼𝑛 − 𝛼𝑛
∗ )𝐺(𝑥𝑛,𝑥) + 𝑏

𝑁
𝑛=1   

 
 

Commonly used kernels on support vector regression 
 
An important aspect of SVR is the mapping of the data into high dimensional spaces, which is efficiently 
achieved through kernel functions (Smola and Scholkpf, 2003). Three kernel types are widely applied on 
support vector regression, the linear kernel, the polynomial kernel and the radial basis function kernel.  The 
radial basis function (RBF)  kernel is very popular due to its good learning ability (Smola and Scholkpf, 2003) 
and is described as follows: 
 

𝑒−𝛾‖𝑥−𝑥‖
2
 

 
Most machine learning packages for support vector regression come with built in different kernels such as 
linear, polynomial and gaussian.  
 
Influence of the support vector regression parameters on the final model 
 
The key to SVR is the tuning of the parameters that immediately affect model performance. The process 
involves particularly the choice of the kernel function, which must be adequate to the data characteristics 
(Wang and Xu, 2017), selecting the relevant parameter for the kernel function, as well as setting the 
parameter 𝐶 and 𝜀 from SVR cost function. 
 
Parameter 𝜀 
 
As mentioned in the previous sections in the SVR algorithm the aim is to minimize a structural risk function, 
adopting an 𝜀-intensive loss function. The process penalizes predictions that fall outside the 𝜀-region. The 
value of 𝜀 defines the width of the region, therefore, smaller values for 𝜀 mean narrower regions, with less 
tolerance for errors, while larger values of 𝜀 mean higher tolerance for errors. Several loss functions can be 
adopted on the support vector regression, including linear, quadratic and Huber (Awad and Kahnna, 2015). 
Such functions are convex to ensure that the problem has a unique solution. The choice of loss function 
affects the final model, for example, the Huber function applies higher penalties than the linear loss function 
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as error increases. The choice of loss function depend on noise affecting the data set.  Figure 1 shows the 
linear, quadratic and Huber loss functions.  
 

 
Figure 1: Loss function types: (a) linear, (b) quadratic, (c) Huber (Awad and Kahnna, 2015) 

 
Parameter C 
 
The performance of the model is directly affected by the parameter 𝐶 which represents the penalty 
imposed on data that lie outside the range of error defined.  That is, if the 𝐶 value is large a higher penalty 
will be applied on prediction errors. If 𝐶 is lower, than the penalty imposed is lower. This results in models 
that are more or less complex according to the value set for 𝐶. If the value is too small, the model is too 
simple and does not capture data complex features adequately. On the other hand, if 𝐶 is too large, then 
the model is too complex and will not generalize well on new predictions. Figure 2 shows different 
interpolations obtained with different 𝐶 values.  
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Figure 2: Influence of C on the SVR model. Top right: 𝐶 = 1; top left:𝐶 = 10; bottom right 𝐶 = 100;  

bottom left: 𝐶 = 1000 

 
It is seen from Figure 2 that the patterns captured from the data are more complex as the value of 𝐶 
increases.   
 
RBF Kernel parameter: gamma 
 
The parameter gamma is discussed on the present paper, given that the proposed algorithm uses the RBF 
kernel. Intuitively, the gamma controls how rapidly the RBF decays. It can be interpreted as how far a 
training examples acts, being that low values of gamma mean that the training example reaches far, and 
large values of gamma mean that the training example acts only close to the example itself. The model is 
sensitive to the choice of gamma. At limit, If gamma is too large, the radius of influence will only include 
the training data itself. On the other hand, if gamma is too small, then the model will present linear 
behavior. Figure 3 presents the interpolated models obtained with different values of the gamma 
parameter. 
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Figure 3: Influence of gamma on the SVR model. Top left: gamma=0.01; Top right: gamma=1; bottom left: gamma=10; 

bottom right: gamma = 100 

It is clear from Figure 3 that if the gamma parameter is to high the generalization capability of the algorithm 
is compromised. For gamma = 100 it seen that between samples, the interpolation is simply the average 
from the data set, therefore, the prediction performance on new instances is very poor.  
Generally, the choice of kernel function and parameters on SVR are obtained through grid search cross 
validation and evolutionary methods. According to Wang and Xu (2017), these optimization methods are 
not efficient due to the exhaustive search for optimal parameter and the possibility of the evolutionary 
algorithm fall into a local optimization, leading to suboptimal solutions.  
 
 
Locally weighted Support Vector Regression (LWSVR)  
 
Based on the principals of local models and specific weighting for each training point, Ellatar et al. (2010) 
proposed an algorithm in which the SVR risk function is modified to account for data relevance. As 
demonstrated in the previous section 𝐶 is a fixed regularization parameter, defined a priori by the user, 
commonly chosen through grid search. If 𝐶 is considered a constant value, it means that every data point 
in the training set contributes to the function to the same extent.  However, the algorithm proposed by 
Ellatar et al., (2010) considers 𝐶 as a function of the distance between the training point and the estimation 
location, so that when training data is close to the prediction location, more accurate must be the model, 
in other words, the algorithm uses the concept of locally weighted learning. So, the modified risk function 
is formulated as follows: 
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1

2
‖𝑤‖2 + 𝐶𝑖∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑁
𝑖=1    

and  
𝐶𝑖 = 𝑊𝑖𝐶  

 
 
𝑊𝑖 is the weight calculated for each training data. Replacing the constant 𝐶 in the previous formulation the 
constraints become: 

{
∑ (𝛼𝑖 − 𝛼𝑖

∗)𝑁
𝑖=1

0 ≤ 𝛼𝑖 , 𝛼𝑖
∗ ≤ 𝐶𝑖

    

 
From locally weighted learning literature, there are a number of weighting functions that can be applied. 
The algorithm proposes the gaussian weighting function as:  
 

𝑊(𝑑) = 𝑒−
(
𝑑𝐸
2𝜎
)
2

 
 
Where 𝑑𝐸  is the Euclidean distance between the training data and the estimation point, 𝜎 is the smoothing 
parameter, that controls the range over the generalization is performed. As mentioned in the previous 
section, the smoothing can be defined as a fixed value prior to the estimation process, or it could be also 
defined as local parameter. Ellatar et al. (2010) define the smoothing parameter as a local function, based 
on the Mahalanobis distance between the data points and the estimation location, since the Mahalanobis 
distance anchored on correlation between variables it avoids any problems related scale (Ellatar et 
al.,2010). In this paper the bandwidth is defined as a parameter of the neighborhood and is defined as 
follows:   
 

𝜎 = (
𝑑𝐸𝑚𝑖𝑛(𝑑𝐸𝑚𝑎𝑥 − 𝑑𝐸𝑚𝑒𝑎𝑛)

𝑑𝐸𝑚𝑒𝑎𝑛(𝑑𝐸𝑚𝑎𝑥 − 𝑑𝐸𝑚𝑖𝑛)
)

2

+ 1 

 
 
𝑑𝐸𝑚𝑖𝑛  is the minimum Euclidean distance inside the neighborhood, 𝑑𝐸𝑚𝑎𝑥  is the maximum value for the 

Euclidean distance in the neighborhood, 𝑑𝐸𝑚𝑒𝑎𝑛  is the average Euclidean distance inside the neighborhood. 

As the Euclidean distance of the nearest neighbor inside the region increases the larger will be the 
smoothing parameter leading larger radius of generalization. The unit value on the smoothing parameter 
equation avoids that weights become too small causing instability on the SVR algorithm.   
New predictions obtained through LWSVR are generated considering the sample data that fall inside a 
search radius defined by the user as starting point. Given the size of the neighborhood, the algorithm will 
follow 4 steps: 
 

• Considering all the points that fall inside the search radius the smoothing parameter is calculated 
for the neighborhood; 

• For each point inside the neighborhood, the algorithm calculates the 𝐶 value applied on the 
support vector regression model; 

• With the SVR models, predict the value for the estimation location; 

• Finally, the predictions are combined using the previously defined weighting function. 
  
The computational time is directly linked to the number of data samples that fall inside the neighborhood. 
So, it is possible to limit the number of neighbors used inside each neighborhood, however, this feature 
must be considered with care given that it limits the amount of information used. The minimum number of 
samples is also defined by the user, although it is recommended to be no less than two samples per 
neighborhood in a two-dimensional case study.  Also, the gamma parameter at this point in this research is 
kept as a fixed value of 0.1.  
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Locally weighted support vector regression and support vector regression:  a comparison 
 
The proposed algorithm is tested on the Jura data set (Goovaerts, 1997), which consists of 259 samples 
collected by the Swiss Federal Institute of technology at Lausanne. It consists of concentrations of seven 
heavy metals, from which the variable Cobalt is selected. The sample spacing is approximately 250m. The 
statistics for the Cobalt are presented in Table 1: 
 

Table 1: Cobalt statistical summary 

Count Mean Std Minimum Maximum Median 

259 9.30 3.57 1.55 17.72 9.76 

 
Statistically the data set is fairly well behaved. The distribution is nearly symmetric, given that the median 
value is close to the population mean. Also, outliers are not detected on the data set. The location map 
presented in Figure 4 illustrates the distribution over the area of interest. 

 
Figure 4: Location map of Cobalt samples throughout the area of interest 

It is seen from Figure 4 that data is collected irregularly, however, it does not show significant data 
clustering. Also, on central portion of the map it is seen a majority of medium to high concentrations of 
Cobalt while on the south-west and north-west portions there are a number of samples with significantly 
lower concentrations (below the mean value). 
 
Both algorithms, LWSVR and SVR will be applied. The parameter setting for SVR is the defined by grid search, 
which pointed the optimal kernel as the radial basis function, with 𝐶 = 10 and gamma = 0.9. For the LWSVR 
the parameter set is search radius, defined as 750m; and the type of kernel, which is set as a radial basis 
function.   
 
Model performance 
 
The model performance is assed by a 5-fold cross validation, visual validation and local mean trend 
reproduction on the validation sets.  
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Table 2: Mean squared error and 𝑅2 value obtained on the validation set of the 5-fold cross validation 

Fold SVR MSER LWSVR MSER SVR 𝝆 with 
validation 
samples 

LWSVR 𝝆 with 
data samples 

#1 13.55 8.18 0.28 0.63 

#2 18.72 7.42 0.14 0.69 

#3 11.65 4.99 0.4 0.8 

#4 13.31 6.35 0.37 0.69 

#5 11.75 8.92 0.43 0.67 

Average 13.79 7.12 ----- ------ 

 
It is seen on Table 2 that LWSVR systematically performed better on the data set than the SVR algorithm. 
Also, LWSVR obtained higher correlation to the validation set samples than SVR. Nonetheless, it is clear that 
the use of grid search to determine the parameters of SVR led to a suboptimal model, with less 
generalization capability than the locally weighted model. Even with a fairly simple data set the sample 
sparsity and irregularity affect the SVR prediction. It is clear from Figure 5 that the SVR captured general 
patterns of the data, however it failed to reproduce local specificities of the data. The LWSVR reduced the 
MSER on the final model in 51% relative to the 5-fold average value.  
 

 
Figure 5: Left- sample data location; Center - interpolated model from training set number 1 through SVR; Right – 

interpolated model obtained through LWSVR 

On figure 5 it shown the sample locations and the interpolated models obtained with use of the training set 
of the first fold. It is seen, that general behaviors of Cobalt concentrations throughout the area are captured 
by the SVR model. On the south-west and north-west portion, it seen a decrease of the interpolated values 
as observed on the sample location map. However, regions on the center, where samples vary from medium 
to high concentrations is over estimated by the SVR, where the model is overly smoothed. On the other 
hand, the LWSVR reproduces the patterns observed on the spatial data distribution with higher accuracy. 
The regions of lower values are more defined in LWSVR, as are the regions with medium concentration 
values. Figure 6 presents the local trend of the mean on the validation set from the first fold, along with the 
local mean of the LWSVR and SVR predictions on the validation set. 
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Figure 6: Swath plot on the X direction of the area of interest, performed over the sample data on the Validation set 

from the first fold.  

Figure 6 corroborates the smoothing effect observed on the SVR interpolated map, on the slice from 1.5km 
to 2km on the East direction, the SVR follows the general behavior presented by the data samples, but still 
presents high degree of over estimation. This effect becomes evident on the central region of the curve. As 
seen on the interpolated map, due to a suboptimal global fit of SVR the lower values on this region are not 
reproduced and the area is overestimated. In contrast LWSVR captures the data behavior closely 
reproducing subregions trends. Nonetheless, the LWSVR does not perform well on the boundaries of the 
data set, underestimating the values.  It is important to highlight that the parameter definition accordingly 
to a relevance metric has not only significantly improved performance, but the algorithm practical use is 
simpler. The user does not have to previously optimize the parameters, avoiding suboptimal models. Also, 
since the LWSVR algorithm fits as many SVR models as there are samples inside the neighborhood, the 
workflow increases the cost of computational time.  
 
Conclusions 
 
The particular features that permeate geological data sets have shown, in this research that machine 
learning algorithms benefit from local learning. This is due to sparsity and irregularity on the data collected, 
which turn the global model fit challenging, often leading only to suboptimal models. Such situations affect 
greatly the model generalization capability. Also, the algorithm herein proposed does not require 
parameter setting prior to the training stage. The parameter is defined dynamically according to the 
neighborhood information to which the model is fit. The local component on the model leads to a higher 
capacity in capturing sub regions specificity that mounts to a more accurate final model. It is important to 
highlight that the parameter gamma is not fine-tuned on the LWSVR, and is used as a fixed value over 
modeling. However, gamma translates on how far a training example influences on the model, and it is 
reasonable that it should also be defined according to the training data inside the neighborhood.  
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