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Locally Varying Anisotropy‐Based Linearized Post‐Stack Inversion
Anton Bogrash, Mauricio Sacchi, Jeff Boisvert

Spatial inverse problems aim to characterize spatially distributed phenomena being a subclass of more gen‐
eral inverse problems. Fundamentally, any inference from an indirect measurement could be posed as an
inverse problem. Modern inverse modeling within the Earth science context has been mostly developed in
geophysical community with gradually growing involvement of relevant adjacent disciplines. The current
work is concerned with joint application of geostatistics and regularized seismic inversion. Vast majority of
inverse problems are ill‐posed with some of the most important difficulties being non‐linearity, instability
and non‐uniqueness. While non‐linear probabilistic inversion presents the research frontier, it is outside the
scope of the current work. Linearized solution is adopted in the presented methodology and Tikhonov reg‐
ularization is imposed as a constraint to address the latter two issues. Such mathematical simplicity and
tractability come at a price of oversimplification of complex physical processes and their geological manifes‐
tation. Nevertheless, this presentation is intended to demonstrate that quantification of spatial continuity
from geostatistical methods can significantly improve even a fairly basic linearized Gaussian inversion for
acoustic impedance. Covariance matrices in the inversion estimates are the key components of a realistic
solution. Reliable spatial covariance inference requires redundant measurements in all directions. However,
a typical petroleum exploration issue is the lack of sufficient data points for robust horizontal covariance esti‐
mation. The main proposed idea is to use locally varying anisotropy (LVA) field estimated from seismic data
to calculate the covariance matrix. The orientations could be derived directly from seismic which would also
address nonstationarity. The proposed methodology is compatible with the state‐of‐the‐art geostatistical,
geophysical and geological modeling components of the reservoir characterization workflow at the explo‐
ration and appraisal stages.

Introduction
Inverse problems in geophysics count a few decades of history prompting rigorous mathematical treatment.
Three major schools of thought emerged historically in Russia (Tikhonov, 1943, 1963), in USA (Backus &
Gilbert, 1967, 1970) and in France (Tarantola, 2004; Tarantola & Valette, 1982).

The scope of this presentation is limited to seismic inversion constrained by the information on spatial conti‐
nuity from geostatistical analysis. Note it is not the technique known by practitioners as geostatistical inver‐
sion (Deutsch, 2001) which also involves sequential simulation to generate realizations. Within petroleum
industry context, inversion plays an important role in the reservoir characterization linking quantitative in‐
terpretation of the seismic data and well logs with the target properties of interest such as porosity, perme‐
ability, fluid saturation etc.

Problem formulation
Main issues with inverse problems are non‐linearity, instability and non‐uniqueness of solution. We only
consider linearized solutions in the work presented here. For some of the latest developments on non‐linear
inversion we refer to, e.g. (Liu et al., 2018).

Seismic data contains much information on the geological structures than conventional geostatistical and
geophysical methods use. Local anisotropy incorporated in geophysical inversion has been done by some
researchers (Bongajum, Boisvert, & Sacchi, 2013; Pereira, Calçôa, Azevedo, Nunes, & Soares, 2020). The
current work capitalizes on achievements of the former with main differences being extraction of the orien‐
tations directly from seismic data rather than from the true model of acoustic impedance and calculation of
the varying magnitudes in the LVA field.

In geophysical context, linearized forward problem is typically expressed as

𝐝 = 𝐺𝐦 (1)

where
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𝐝 is the measured observations dataset,
𝐗 is the set of model parameters,
𝐺 is a forward operator representing a theory which predicts 𝐝 from𝐦.

Specifically, in this project, 𝐝 ≡ 𝐬— the seismic record, 𝐦 ≡ 𝐋𝐏 — logarithmic impedance and 𝐺 — geo‐
physical transform matrix, resulting in a convolutional model of a seismic trace without noise:

𝐬 = 𝐺𝐋𝐏 (2)

Therefore, the cost function in least‐squares sense with ̂𝐋𝐏 being the estimate of 𝐋𝐏 and assuming 𝐺 can be
constructed from a known wavelet 𝑤 and a differential operator 𝐷 (Madsen, Hansen, & Omre, 2020) could
be written as

𝐽(𝐿𝑃) = ‖𝐬 − 𝐺 ̂𝐋𝐏‖22 (3)

Formulationswith explicit performancemetrics for image quality assessment acoustic propertymodels, such
as structural similarity index (SSIM) (Li et al., 2020) have been considered but simple root mean square error
(RMSE) suits the current project better.

RMSE has been chosen as a loss function as it is fairly straightforward and suitable for the task:

𝑅𝑀𝑆𝐸 = ඨ 1
𝑁Σ

𝑁
𝑖=1൬𝐫 − 𝐫̂൰

2
(4)

Pearson correlation coefficient has been selected as a measure of success:

𝑃𝐶𝐶 =
∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)

ට∑𝑛
𝑖=1(𝑥𝑖 − 𝑥̄)2ට∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
, (5)

where 𝑥̄ and 𝑦̄ are the averages for 𝑥 and 𝑦, respectively.

Regularized inversion. A deterministic formulation of the linear inverse problem without is presented in
(Scheidt, Li, & Caers, 2018, p. 168) citing (Tikhonov & Arsenin, 1977):

𝐽(𝐦) = ‖𝐺𝐦− 𝐝𝑜𝑏𝑠‖22 + 𝜇‖𝐦−𝐦0‖22, (6)

where𝐦0 is a reference model.

The solution to the objective function 6 is:

𝐦̂ = (𝐺𝑇𝐺 + 𝜇𝐼)−1(𝐺𝑇𝐝𝑜𝑏𝑠 + 𝜇𝐦0) (7)

Next, a formulation with weighting matrices is given:

𝐽(𝐦) = ‖𝑊𝑇
𝑑 (𝐺𝐦 − 𝐝𝑜𝑏𝑠)‖22 + 𝜇‖𝑊𝑇

𝑚(𝐦 −𝐦0)‖22 (8)

Let us substitute the weighting matrices𝑊𝑑 and𝑊𝑚 with inverse of covariance Σ−1𝑑 and Σ−1𝑚 :

𝐽(𝐦) = ‖Σ−1/2𝑑 (𝐺𝐦 − 𝐝𝑜𝑏𝑠)‖22 + 𝜇‖Σ−1/2𝑚 (𝐦 −𝐦0)‖22 (9)
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Denote the factorization of data covariance (assumed a diagonal matrix, i.e. uncorrelated noise):

Σ−1𝑑 = 𝑄𝑑𝑄𝑇
𝑑 ; [𝑛 × 𝑚][𝑚 × 𝑛] = [𝑛 × 𝑛], (10)

and similarly the model covariance:

Σ−1𝑚 = 𝑄𝑇
𝑚𝑄𝑚; [𝑚 × 𝑛][𝑛 × 𝑚] = [𝑚 ×𝑚] (11)

now expression 9 becomes:

𝐽(𝐦) = ‖𝑄𝑑𝑄𝑇
𝑑(𝐺𝐦 − 𝐝𝑜𝑏𝑠)‖22 + 𝜇‖𝑄𝑇

𝑚𝑄𝑚(𝐦 −𝐦0)‖22 (12)

Take the partial derivatives and equate to zero:
𝜕𝐽
𝜕𝐦𝑇 = 2𝐺𝑇𝑄𝑑𝑄𝑇

𝑑𝐺𝐦− 2𝐺𝑇𝑄𝑑𝑄𝑇
𝑑𝐝𝑜𝑏𝑠 + 2𝜇𝑄𝑇

𝑚𝑄𝑚𝐦− 2𝜇𝑄𝑇
𝑚𝑄𝑚𝐦0 = 0 (13)

𝐦(𝐺𝑇𝑄𝑑𝑄𝑇
𝑑𝐺 + 𝜇𝑄𝑇

𝑚𝑄𝑚) = 𝐺𝑇𝑄𝑑𝑄𝑇
𝑑𝐝𝑜𝑏𝑠 + 𝜇𝑄𝑇

𝑚𝑄𝑚𝐦0 (14)

𝐦̂ = (𝐺𝑇𝑄𝑑𝑄𝑇
𝑑𝐺 + 𝜇𝑄𝑇

𝑚𝑄𝑚)−1(𝐺𝑇𝑄𝑑𝑄𝑇
𝑑𝐝𝑜𝑏𝑠 + 𝜇𝑄𝑇

𝑚𝑄𝑚𝐦0) (15)

The estimate above is equivalent to equation 6.55 in (Scheidt et al., 2018, p. 168). Next, let us take equation
9 assuming𝐦0 = 0 and the regularization term 𝜇 = 1:

𝐽(𝐦) = ‖Σ−1𝑑 (𝐺𝐦 − 𝐝𝑜𝑏𝑠)‖22 + ‖Σ−1𝑚 (𝐦)‖22 (16)

𝜕𝐽
𝜕𝐦𝑇 = 2𝐺𝑇Σ−1𝑑 𝐺𝐦− 2𝐺𝑇Σ−1𝑑 𝐝𝑜𝑏𝑠 + 2Σ−1𝑚 𝐦 = 0 (17)

𝐦(𝐺𝑇Σ−1𝑑 𝐺 + Σ−1𝑚 ) = 𝐺𝑇Σ−1𝑑 𝐝𝑜𝑏𝑠 (18)

𝐦̂ = (𝐺𝑇Σ−1𝑑 𝐺 + Σ−1𝑚 )−1(𝐺𝑇Σ−1𝑑 )𝐝𝑜𝑏𝑠 (19)

Model setup
For the purposes of the current project, SEAM Phase I data has been generated from a simple geological
model (Figure 1). The clastic subsection in the red dashed box consists of 125 traces with 40 m separation.
Random Gaussian noise with signal‐to‐noise ratio has been added to the data.

LVA fields were estimatedwith imorient CCG program (Martin & Boisvert, 2017) and shown on Fig. 2. Noisier
seismic data generally requires larger window size.

Results
Relative inversion. Conventional constant anisotropy covariance is more susceptible to variogrammodeling
errors as seen from the vertical striping artefacts in solution c) (Fig. 4). The overall relative inversion lacks a
trend while reproducing the major dipping events.

Upon looking at the trace 55, it could be seen that constant geometric anisotropy inversion reproduces the
trace shape better than LVA(toomany additional impedance variations not existing in the original impedance)
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and regularized solution — less pronounced layer detection.

Absolute inversion. Fig. 6 shows how inclusion of the LFM allows to achieve significant improvement in the
estimation of absolute acoustic impedance values. Due to the low frequency component 𝐿𝑃 0 being so close
to the true values in the current model setup, the regularized inversion slightly outperforms LVA‐based one.

Table 1: Performance comparison between inversion methods.

Inversion method 𝑃𝐶𝐶 𝐼𝑃 𝑅𝑀𝑆𝐸 𝐼𝑃 𝑃𝐶𝐶 𝑑𝑡𝑥 𝑅𝑀𝑆𝐸 𝑑𝑡𝑥
Regularization 96.453 0.973 0.003 0.913
CGA‐based 689.990 0.480 0.002 0.965
LVA‐based 107.030 0.957 0.003 0.935

Conclusions and future work
Including spatial information shows an advantage over purelymathematical regularized least squares relative
inversion. Missing low frequencies are critical for the absolute impedance values estimation: they could
be derived from the available migration velocity cube or well logs. The shortcoming of current numerical
experiment setup is that the difference between the LFM and true acoustic impedance values is fairly small.
In a real world reservoir characterization project this would not be the case and one of the intended next
steps is to build a low frequency model based on interpreted horizons so the kriging interpolation is bound
to stratigraphic intervals.

In petroleum exploration context, practical difficulty of horizontal variogram inference presents a challenge.
Although there are techniques developed to improve horizontal variogram reliability from the seismic (Rez‐
vandehy & Deutsch, 2018), the variogram in Euclidean 𝑞‐dimensional space (Boisvert & Deutsch, 2011) and
respective inver of covariance matrix seems to be more stable in the inversion applications.

Another potentially fruitful research direction is stochastic Bayesian inversion where geostatistics brings
value through complex geological priors quantification (Hansen, Cordua, & Mosegaard, 2012) and model‐
ing multivariate relationship between the variables of different nature at different scales (Hadavand Siri &
Deutsch, 2018).

More complex geological models are going to be investigated to determine the advantages of using the
covariance matrix estimation with LVA with possible extension to pre‐stack inversion.
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Figures

Figure 1: SEAM Phase I acoustic impedance converted to time domain. A small clstic section in the dashed
box has been used for subsequent numercal experiments. Seismic record is generated fro reflectivity

convolved with a minimum phase 25 Hz Ricker wavelet.
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Figure 2: LVA orientation fields from the true P‐impedance (left) and seismic data (right) are shown. The
LVA field from seismic is used for subsequent inversion estimates.
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Figure 3: Covariance estimation from the true P‐impedance model. Constant geometric anisotropy relies
on Euclidean distances only whereas LVA covariance takes the shortest path distance and isotropic
variogram in 𝑞 dimensions after multidimensional scaling (Boisvert & Deutsch, 2011) is shown.
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Figure 4: Comparison between relative inversion configurations. Top row represents seismograms whereas
the bottom is P‐impedance: a) True model; b) regularized inversion; c) constant geometric

anisotropy‐based inversion; d) LVA‐based inversion.
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Figure 5: Comparison between relative inversion configurations for trace 55: a) LVA‐based inversion; b)
constant geometric anisotropy‐based inversion; c) regularized inversion; d) seismic record with trace

location.
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Figure 6: Comparison between absolute inversion configurations. Top row represents seismograms
whereas the bottom is P‐impedance: a) True model; b) regularized inversion; c) constant geometric

anisotropy‐based inversion; d) LVA‐based inversion.
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Figure 7: Comparison between absolute inversion configurations for trace 55: a) LVA‐based inversion; b)
constant geometric anisotropy‐based inversion; c) regularized inversion; d) seismic record with trace

location.
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